


# Chel-OH-ta

A Note-by-Note Beer

# ABSTRACT

The first Note-by-Note beer ever conceived is unveiled in this document. Spicy alcohol-rich beads will make the difference in this drink!

Eduardo Liza Diaz Molecular Gastronomy

# CHEL-OH-TA

#### 1. DESCRIPTION OF THE IDEA

This Note-by-Note beer has been baptised as Chel-OH-ta, thus highlighting the versatility of alcohol in this specific beverage. Chel-OH-ta is composed of spicy alcoholic beads as the dispersed phase with flavoured water as the dispersed medium. In order to mimic a conventional beer as close as possible,  $CO_2$  is injected in the dispersed medium. The following figure shows the final version of the product.



Figure 1 – Schematic layout of Chel-OH-ta.

Chel-OH-ta gives you the option to either choose to chew and consume the alcohol, or not. Besides the fact that this beverage is done with a Note-by-Note recipe, the versatility that this beverage

provides in terms of alcohol consumption is what makes it unique. These beads also have a particular flavour boost, as they contain capsaicin for a more explosive mouth experience.

#### 2. ELABORATION PROCESS

The recipe given under this section is calculated for one pint (473 ml) with the content of alcohol that the consumer desires.

#### **Dispersion medium**

- 1. In a small pot, introduce the water with the vegetal protein,  $\alpha$ -humulene,  $\beta$ -lupulic acid, starch,  $\alpha$ -amylase, and  $\beta$ -amylase (Table 1).
- 2. Reach a temperature of  $63^{\circ}$ C and keep it for 20 minutes ( $\beta$ -amylase rest).
- 3. Take the temperature up to 72°C and keep it for 10 minutes ( $\alpha$ -amylase rest).
- 4. Increase the temperature up to 80°C for five minutes for enzyme deactivation.
- 5. Add the ethyl acetate, isoamyl acetate, limonene, and linalool (Table 1).
- 6. Take the temperature up to 100°C and keep it for 30 minutes. Expect a 10-15% evaporation rate at this point.
- 7. Cool down at ambient temperature and later store the liquid in the fridge at 4°C.
- 8. Pressurize with  $CO_2$  in a regular beer keg.
- 9. Store cold.

| Table 1 – Ingredients for the dispersion medium | n |
|-------------------------------------------------|---|
|-------------------------------------------------|---|

| Ingredient      | Quantity |
|-----------------|----------|
| Water           | 1000 ml  |
| Vegetal protein | 30 g     |
| α-humulene      | 30 mg    |
| β-lupulic acid  | 13 mg    |
| Starch          | 40 g     |
| α-amylase       | 120 mg   |
| β-amylase       | 100 mg   |
| Ethyl acetate   | 45 mg    |
| Isoamyl acetate | 4 mg     |
| Limonene        | 12 mg    |
| Linalool        | 10 mg    |

#### **Beads**

1. Prepare a dispersion of water, ethanol, starch, capsaicin, anthocyanin, citric acid, and sodium alginate with the quantities shown in Table 2.

- 2. Prepare 200 ml of a solution containing 2% (w/v) CaCl<sub>2</sub>.
- 3. Add the dispersion from step 1 to a syringe with a size-22 needle.
- 4. Introduce the dispersion dropwise, slowly, to the CaCl<sub>2</sub> solution being stirred at 400 rpm.

 Table 2 – Ingredients for the bead preparation.

| Ingredient      | Quantity |
|-----------------|----------|
| Water           | 50 ml    |
| Ethanol         | 450 ml   |
| Starch          | 30 g     |
| Capsaicin       | 1.5 mg   |
| Anthocyanin     | 50 mg    |
| Citric acid     | 90 mg    |
| Sodium alginate | 12.5 g   |

## Final Chel-OH-ta

The beads have a radius of about 0.001 m, which occupies a volume of 0.034 ml. As the beads are 90% alcohol, approximately ~784 beads (~24 ml) would be necessary to reach the 5% alcoholic content in this NbN beer. Thus, the steps to serve this drink are as follows:

- 1. In a volumetric flask, measure 24 ml of beads.
- 2. Add the beads to a beer mug (as Figure 1) and proceed to add the cold and carbonated dispersed medium.
- 3. Enjoy!

# 3. CONCLUSIONS

- Considering the beads and the starch particles dispersed in the system, Chel-OH-ta can be considered a suspension following IUPAC definition.
- Chel-OH-ta is a versatile Note-by-Note beverage that can be consumed by all types of consumers.

### 4. **Recommendations**

- The recipe of the beads can be modified to match other flavours such as creamy, vanilla, etc, as well as the dispersed medium can have a recipe for other beer styles (stout, brown ale, etc).
- The gas could be replaced by nitrogen, which gives a finer bubble size and, thus, could offer better head stability.
- Develop the prototype experimentally.

#### 5. **References**

Gomaa, A.M. (2018). Application of Enzymes in Brewing. *Journal of Nutrition and Food Science Forecast*, 1(1).

Gupta, M., Abu-Ghannam, N. and Gallaghar, E. (2010). Barley for Brewing: Characteristic Changes during Malting, Brewing and Applications of its By-Products. *Comprehensive Reviews in Food Science and Food Safety*, 9(3), pp.318–328.

IUPAC (2014). *IUPAC - suspension (S06198)*. [online] goldbook.iupac.org. Available at: http://goldbook.iupac.org/terms/view/S06198 [Accessed 25 Nov. 2020].

Khoo, H.E., Azlan, A., Tang, S.T. and Lim, S.M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. *Food & Nutrition Research*, 61(1), p.1361779.

Lee, B.-B., Ravindra, P. and Chan, E.-S. (2013). Size and Shape of Calcium Alginate Beads Produced by Extrusion Dripping. *Chemical Engineering & Technology*, 36(10), p.n/a-n/a.

Lexhaller, B., Colgrave, M.L. and Scherf, K.A. (2019). Characterization and Relative Quantitation of Wheat, Rye, and Barley Gluten Protein Types by Liquid Chromatography–Tandem Mass Spectrometry. *Frontiers in Plant Science*, 10.

Mandal, S., Kumar, S.S., Krishnamoorthy, B. and Basu, S.K. (2010). Development and evaluation of calcium alginate beads prepared by sequential and simultaneous methods. *Brazilian Journal of Pharmaceutical Sciences*, 46(4), pp.785–793.

Nance, M.R. and Setzer, W.N. (2011). Volatile components of aroma hops (Humulus lupulus L.) commonly used in beer brewing. *Journal of Brewing and Distilling*, 2(2), pp.16–22.

Olaniran, A.O., Hiralal, L., Mokoena, M.P. and Pillay, B. (2017). Flavour-active volatile compounds in beer: production, regulation and control. *Journal of the Institute of Brewing*, 123(1), pp.13–23.

Schneider, D. (2020). Determination of Thresholds for Capsaicin in Aqueous and Oil-Based Solutions. In: *The Chemical Sensory Informatics of Food: Measurement, Analysis, Integration.* American Chemical Society.

Spessoto, F.A., Fonteles, N.T., Vega-Herrera, S.S., Paredes-Mur, J.S. and Cortez-Vega, W.R. (2020). Determination of anthocyanins content and antioxidant activity of beer from Chicha Morada obtained of the purple corn (Zea mays L.). *Journal of Bioenergy and Food Science*, 7, pp.1–8.

Voo, W.-P., Ooi, C.-W., Islam, A., Tey, B.-T. and Chan, E.-S. (2016). Calcium alginate hydrogel beads with high stiffness and extended dissolution behaviour. *European Polymer Journal*, 75(2016), pp.343–353.