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NANOFOOD: DEFINITION

Nanofoods are developed from a wide range of ingredients including lipids,
polysaccharides, and proteins. These are used to form a range of materials with
varying properties including emulsions, liposomes, and particles.

The range of ingredients, materials, and properties highlight the conceptual
diversity of formed nanostructures spanning from nanoemulsions to
nanoliposomes. Most findings of nanofoods to date are broadly descriptive.
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NANOFOOD PRODUCTS
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WHY NANOFOOD? (1)

Mayonnaise Mayonnaise comprises typically 70% fat — far from ideal if you're on a diet. One way to reduce

the fat content below 40% is to add more water, plus some starch to make sure the mayonnaise does not become
too runny. But an altogether tastier approach is to manipulate the droplets' structure on the nanoscale.
Techniques are developed to replace the insides of the fat droplets with water, creating an emulsion that has the
same texture, but less fat than the real thing - Contract research company Leatherhead Food Research, UK.

Iron The body stores iron as solid, insoluble nanoparticles that are only broken down into useful atoms

once they get inside our cells. Supplements containing iron in a soluble form can be toxic in very high
doses, because they damage the gut. The method is to sneak iron directly into cells in their insoluble,
nanoparticle form — piggybacking on the body's natural route — to make a more effective supplement.

Salt Nanometre-sized grains of salt, comprise surface area a million-fold smaller than normal salt, which means

that food needs far less salt to give a taste buds the same savoury kick. That could be a boon for those who,
worried about high blood pressure, are trying to reduce their salt intake.

https://www.theguardian.com/what-is-nano/what-you-need-know-about-nano-food



WHY NANOFOOD? (2)

Meat-Antibiotics Nanoparticles could take the place of antibiotics in chickens. The particles
bind to bacteria and then clump together, passing through the chicken along with other fecal matter.

Food as Supplement vitamins and minerals could be delivered through the food we eat. Nanoparticles
could encapsulate vitamin supplements, which could be added to everyday foods such as bread.

Food packaging As for packaging, nanotech is already being used in the US to stop beers going flat.
Plastic beer bottles used by brewer SABMiller contain flaky nanoparticles of clay, which fill up much more
space in the walls of the bottle than molecules of plastic. That makes it much harder for fizzy carbon
dioxide to escape from the beer — or for oxygen, which can spoil the beer's flavour, to get in.

https://www.theguardian.com/what-is-nano/what-you-need-know-about-nano-food



OUR STARTING POINT

26% of greenhouse gas emissions come from food
Greenhouse gas Food Non-food
emissions 13.7 billion tonnes CO.eq 38.7 billion tonnes CO.eq

Are there ChemEng sustainability lessons for nanofood process technology?
To promote an emerging technology.
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FIRST LESSONS ARE TAKEN FOR SUSTAINABILITY IMPROVEMENT
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NANOFOOD AND BIOACTIVES (HEALTH SUPPLEMENTS)

embedded
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NANO-CARRIERS FOR FOOD (1)
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NANO-CARRIERS FOR FOOD (2)
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NANOFOOD PROCESS TECHNOLOGIES: SPINNING & SPRAYING

Use conventional and advanced ChemEng technologies

Figure 9. Coaxial spinning for fabrication of nanofibers. (a) High-
voltage power supply, (b) coaxial jet, and (c) collector.

Figure 10. Conventional electrosprayer. (a) Power supply, (b) Taylor
cone, (c) nanoparticle generation, and (d) nanoparticle collection.



NANOFOOD PROCESS TECHNOLOGIES: CRYSTALLIZATION

Use conventional and advanced ChemEng technologies
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INTEGRATED FOOD PROCESS TECHNOLOGIES

Several ChemEng technologies are used in series: thermal and mechanical.
Sustainability impact can be large by carry-forward effects.
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GLOBAL WARMING POTENTIAL OF FOOD PROCESS TECHNOLOGIES

Table 3. Comparative Summary of Global Warming Potential (GWP) for Selected Food Technologies

food technology
drying

heating

cooling

operation
drum-drying
freeze-drying
spray-drying
infrared-drying

pasteurization

ultra-heat treatment
inoculation + incubation
evaporation

smoking

freezing

product

apples
strawberries
apple pulp
apricots
milk

cream
cheese

milk

yogurt

milk powder
Galician cheese
beans

broccoli

GWP (kg CO,-eq kg™!)
2.67
1.54
0.80
0.71
0.42
0.43
1.65
0.21—0.59
0.49
1.60
1.92
0.70
2.64

reference
74
75
74
76
77
78
79, 80
78, 81
78
82
83
84
84




MANY OPPORTUNITIES VIA CONVENTIONAL FOOD PROCESS TECHNOLOGIES
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PROCESS-SPECIFIC SUSTAINABILITY LESSONS FOR NANOFOOD PROCESSING

These lessons were given for all classes of nanofood processing discussed (in our review paper)
For example, for ‘Thermally Driven Nanofood Technologies and Operation-Specific Sustainability’.

“Thermally driven process technologies involved in nanofood preparation and nanospraying involve
(1) evaporation, (2) heating, and (3) electromagnetic activation. Lessons from conventional food
technologies are available therefore from (2) heating.”

o “Drying, including evaporation, accounts for most thermal energy and electricity consumption within food
processing. For milk powder production for example, this is ca. 44% of the total fuel consumption, equivalent
to 616 MJ kg™.”

o “Areported means to reduce energy consumption is to combine non-conventional drying methods, such as
dehumidification, with conventional high-temperature drying. In this way, GWP can be reduced to ca. 48%
and terrestrial acidification potential (TAP) can be reduced to ca. 59% for apricots by sequentially using
osmotic dehydration and freeze drying.”

o “Microwave drying of sardines reportedly reduces energy consumption by 55% and similarly for bananas.”



GLOBAL WARMING POTENTIAL OF MILK PRODUCTS PROCESSING
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SPONTANEOUS EMULSIFICATION FOR ASTRONAUT BEVERAGES

Macrofluidic Setup: Burette Microfluidic Setup: T-Mixer
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RELEVANT MICROGRAVITY EXPERIMENTS OF NANOFOOD ON EARTH

(a) —&@— Earth —@—Mars —@—moon
(a) resting system in terrestrial gravity  (b) simulated microgravity in terrestrail gravity  (c) microgravity

>
-‘E 120 1030 for pDrop\et < pconl.: for pop\et > pcnnt.:

[=}
o 100 1020

g Fs Fo Fy Fq
=
%_ _ s 1010 o

o< 1000 E
T £ 60 B

E- M _

5 o 990 = F, O
g 2 40 =
=3 pDropIet 80 =
'E 20 970 o

g © :
= 0 o L - L »
E 960 Fo Fa Fs Direction of Flow ”

v

= -20 950

0.1 1 10 100
particle diameter dg, [um]
2.3cm 3.6cm —49cm —6.2cm —7.5cm

(b) —@—FEarth —@—Mars =—@—moon 0.03

.
'E 0.02 1025 0.025

[=}

0 0.015 1020 _
"q"_, Wd,critical 1015 ‘é 0.02 , ; :
- —_ L | i

=% oot T = IO AT T I o 3 R e
St 1010 B E R
= IT: 0.005 'E'_ E

c £ 1005 = S 001

= =z £

= = 0 ] ©
< p 1000 § o

o cont. = 0.005

> .
.g 0.005 995
E Poroplet 0

-0.01 990 0 5 10 15 20 25
0 0.5 1 1.5 2 Time [h]

particle diameter d5, [pum]



100% @

SPONTANEOUS EMULSIFICATION FOR ASTRONAUT MEDICINES
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COMPUTER MODELLING OF ASTRONAUT FOOD (1)
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space mission

Must-meet
(1%t principle constraint):
basic nutrients

\ 4

Nice-to-have:
2" principle
constraints KCAL &

Caloric Weight Compliance Space-proven More nutrients

e 3 & @

constraints

Circular Productivity Palatability Manufacturing



COMPUTER MODELLING OF ASTRONAUT FOOD (2)
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SPACE FOOD PRESENTED TO HALF MILLION PUBLIC

A2

ROYAL ¥
ADELAIDE
SHOW .unig

is the longest-running event
on the South Australian
calendar

- Around 500,000 visitors
- >450 exhibitor stands



	Slide 1: Nanofood Process Technology, Sustainability, and Applications for Human Space Exploration
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

