12 th. International Workshop on Molecular and Physical Gastronomy 0 interactions between odorant compounds and a meat emulsion as a . system ,() (2.Mg) model Marisol Herrera Jiménez Ambrosía Centro Culinario/ Universidad Autonóma Metropolitana

Introduction

Food Meat Oil/water. Odour compounds / Aroma Food.

Mass Tranfer

<u>The</u>rmodynami c Factor

Model System studied

Meat EMulsion

Disperse Phase (oil)

Interphase s

> Types of Emulsifier s

Continuou s Phase (wáter)

Oil Dropets size and distribution

> Other factors

Odour Release

Emulsion Formulation and characterization.

	D _{3,2} (µm)	η _{app} (Pa s)	EC (mL _{oil} /g _{protein})	Fraction volume (\$\phi_de)
Fixed variables	: 25% canola oil, 35% r	protein extract. $\Gamma = 0.6$		
pH				
4.5	37.65 ^a	6.21 ^a	6.329 ^a	0.2692 ^a
5.5	37.39 ^a	9.31 ^a	7.338ª	0.3067 ^b
6.5	6.34 ^b	11.25 ^b	8.016 ^b	0.4311 ^c
7.5	3.43°	21.20 ^c	8.581 ^c	0.7713 ^d
Fixed variables	: 25% canola oil, pH 7.:	5. Γ = 0.6 % protein		
extract	alente dis Constants Lendo s eres (200	and and the second of the second s		
20	39.56 ^a	5.05ª	8.89 ^a	0.0664 ^a
25	32.37 ^b	13.12 ^b	10.94 ^a	0.4419 ^b
30	3.53°	15.70 ^b	11.15 ^a	0.6689 ^c
35	3.49°	21.23°	11.74 ^b	0.7713 ^d

Emulsion mean particle diameter (D3,2), apparent viscosity (η app), emulsifying capacity (EC) and fraction volume of the disperse phase (φ dp), varying pH and protein extract concentration

Model system studied.

Volatiles compounds

voltiles compounds were added to the following systems:

phosphat e buffer 0.1 M

canola oil.

model meat emulsion

SDS-PAGE densitograms of proteins

SDS-PAGE densitograms of proteins in the extract, the continuous and the disperse phases. a) myosin(<200 kDa); b) 120 to 100 kDa; c) 100 to 80 kDa; (d) intermediate or regulatory proteins; e) 60 to 50 kDa; and f)degradation products (<45 kDa).

Release Index

hexanal

octanal

Release Index nonanal

Release Index

2-methyl pyrazine

2-ethyl-3,5-dimetyl pyrazine

Conclusions

- Pyrazines mainly contributed to aroma in lipid systems and in protein solutions but not in emulsions and non protein aqueous systems.
- Hexanal, octanal, and nonanal were minor aroma contributors in lipid media,
- Whereas hexanal and nonanal were released in small amount from protein emulsions.
- Octanal can be considered of an important aroma contributor in emulsions;
- The three aldehydes showed a high release from aqueous systems, with and without protein

Thank you for your time.