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Abstract
This  course  is  given  to  students  attending  the
Educational Module “Physical Chemistry for Food
Structuring” of the Master’s Program “Engineering
–  Products  -  Processes”,  in  AgroParisTech
(France). The example of culinary recipes is used
to study the question of the precision of the mean
and of the standard deviation of a variable for a
population and for a subset of a population (used
for  estimating  the  characteristics  of  the
population).  After  examining  illustrations  of
mathematical  results  concerning  these  two
quantities,  the  internationally  accepted  rules  for
propagating uncertainties are recalled and applied
to calculate the number of significant figures in the
expression of experimental means and standard
deviations. 

Keywords
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Introduction
The following text is part of a university course
on methodology in food science, food technology
and food engineering. It has been observed that
students in these disciplines, even at PhD level
and  irrespective  of  the  country  in  which  they
have studied, know the concepts of mean and
standard  deviation,  but  cannot  always
distinguish between these concepts applied to a
population  or  to  a  sample  extracted  from  a
population  in  view  of  estimating  the
characteristics of the population (there are over
100,000  internet  pages  on  this  subject).
Moreover they rarely know how to express these
values  appropriately.  In  particular,  even  when
they know how to deal with significant numbers,
they hesitate about how many digits to display,
as shown by numerous articles published on this
issue  (Harris,  2014;  Clymo,  2019;  Cousineau,
2020; Quora, 2024; Scribbr, 2024). 
Some students do not know that the rules to be
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applied are given in the Guide for the expression
of uncertainty in measurement,  from the Bureau
International des Poids et Mesures (BIPM, 2008),
and very few are able to determine the number of
significant  figures  that  can  be  displayed  in
measurement results. Sometimes they are taught
to apply rules for reaching this goal, and they can
indeed apply  them,  but  they do not  understand
why the rules hold.  This  course explains slowly
the reasons for the choices to be made.
It  should  be noted that,  unlike  scientific  articles
(for which every sentence must be justified by a
reference), this course, like all others in the same
teaching module, only quotes texts that students
are  recommended  to  read  (except  for  culinary
recipes whose origin is given).

More  precisely,  the  two questions  addressed in
this course are as follows: 
1.  when  calculating  a  mean,  how  many  digits
should be given?
2.  when  calculating  a  standard  deviation,  how
many digits should be entered?

These questions are widely discussed online and
answers of varying quality are proposed (Clymo,
2019), despite the fact that most of the answers
concerning uncertainties and measurements are
explicitly  or  implicitly  described  in  the
internationally accepted Guide for the expression
of  uncertainty in  measurement (GUM),  from the
Bureau International des Poids et Mesures (BIPM,
2008). The GUM was first published in 1993 by
ISO  in  collaboration  with  the  BIPM,  the
International  Electrotechnical  Commission  (IEC),
the International Federation of Clinical Chemistry
(IFCC),  the  International  Union  of  Pure  and
Applied  Chemistry  (IUPAC),  the  International
Union of Pure and Applied Physics (IUPAP) and
the International Organization of Legal Metrology
(OIML).  It  (1)  describes  the  practice  in  the
estimation  of  uncertainty  for  a  broad  range  of
measurements,  (2)  sets  out  the  concepts
required,  (3)  establishes  the  general  principles,
and (4) provides a procedure applicable to cases
where  an  adequate  model  of  the  measurement
process is available.

The  information  given  in  the  GUM  should  be
sufficient, but decades of teaching have shown
that many students find the GUM difficult to read.
This course does not add anything to the GUM,
but it does explain it in a culinary context.
First  the concept  of  the mean is  examined for
culinary  recipes.  In  this  particular  case,  the
question  of  the  choice  of  the  number  of
significant figures is raised (Section 1, below).
Then, after the definition of standard deviation, it
is  shown  how  to  calculate  the  mean  and  the
standard deviation (1) for  a population and (2)
for a sample extracted from the population and
used to get an idea of the population.
On this  basis,  the variability  of  sample means
and  standard  deviations  is  considered
numerically, in order to make it clear that these
values are only orders of magnitude, from which
it must be concluded that it would be absurd to
display  too  many  figures  in  their  expression
(Section 2). 
Finally, using the GUM rules (an extract of which
is  given  in  Figure  10),  it  is  shown  how  to
determine the significant figures for means and
standard  deviations.  The  general  solution  is
given for groups of 3 measurements, as this is
common practice for one of common process in
laboratory  work,  namely  using  a  balance  to
make  mass  measurements  (“gravimetry”)
(Harris, 2014). Special cases are considered, to
show  the  application  of  the  general  formula
(Section 3).

1.  Introducing  the  mean  and  the  standard
deviation through recipes of pie crust

In this section,  we first  review the concepts of
mean and standard deviation. It is true that they
are taught at a early stage at university (Moore
and  McCabe,  1989),  but  it  will  be  seen  that
questions  remain  about  them.  In  order  to
introduce them, the example of pie crust recipes
is used. 
There  are  many  types  of  pastry,  but  only  the
simplest, made with flour, butter, salt and water,
are  considered  here  (This,  2010).  Cookery
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books  give  different  recipes  for  the  crusts.  For
example, in Escoffier et al., 1912), the proportions
given for the ingredients are as follows:
- 500 g flour
- 250 g butter
- 10 g salt
- 200 g water. 
In another classic French pastry book,  Darenne
and  Duval  (1909)  indicate  different  proportions,
but also different ingredients, for a “fine pie crust”
(pâte à foncer fine): 
- 500 g flour
- 300 g butter
- 2 eggs
- 20 g sugar
- 250 g water.
However, during a molecular gastronomy seminar
(This, 2021), it was observed that pie crusts made
with eggs (whole, or yolk only, or white only) could
not be distinguished from the same pastry made
with water, so this recipe can be simplified. In their
book, Darenne and Duval (1909) noted that some
pastry chefs use up to 375 g of butter for 500 g of
flour,  and they also gave another  recipe for  an
"ordinary pie crust" (pâte à foncer ordinaire) and
for  a  "common  pie  crust"  (pâte  à  foncer

commune). These recipes and others are given
in the Table 1. 
For a statistical study, the 10 recipes in Table 1
can be considered as  a  “population”,  and any
element in this population is called - it depends
on  the  particular  community  describing  it -  an
“element” (using the language of set theory and
probability),  or  a  “unit”  (more  in  the  statistic
circles), or an “experimental unit”, or an “object”,
or  an  “individual”,  or  a  “member”  (Moore  and
MacCabe,  1989;  Evans and Rosenthal,  2006).
For the pie crust analysis, each element (that is:
each particular recipe) is characterised by many
variables (such as the quantity of butter, or the
quantity  of  flour),  so  that  a  complete
representation  requires  more  than  the  three
spatial  dimensions,  and  no  visual  display  can
correspond to the table. 
However  the  description  can  be  reduced  to  a
single dimension if salt and sugar are not taken
into  account  and  if  the  amount  of  water  is
considered  irrelevant,  as  it  depends  on  the
particular  quality  of  the  flour  (which  is  not
addressed  in  the  recipes).  Using  these
simplifying  assumptions,  the  recipes  can  be
described by the amount of butter in g per 500 g
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Table 1. The quantities of ingredients given by some classical recipes for pie crust.

1. Escoffier et al., 1912; 2. Darenne and Duval, 1909 (pâte à foncer); 3. Darenne and Duval, 1909 (pâte à foncer
ordinaire); 4. Darenne and Duval, 1909 (pâte à foncer commune); 5. Darenne and Duval, 1909 (pie crust); 6.
Favre, 1905; 7. Favre, 1905 ; 8. Favre, 1905 ; 9. Lacam, 1878; 10. Gouffé, 1873. “Ng” stands for “not given”.

Recipe 1 2 3 4 5 6 7 8 9 10

Flour 
(g)

500 500 500 500 500 500 500 500 6 600 1 500

Butter  
(g)

250 300 250 180 250 250 350 180 4 000 1 000

Salt (g) 10 0 12 12 12 30 30 30 125 30

Water  
(or 
eggs) 
(g)

200 370 (2) 300 300 160 (3) ng 20 (2 
yolk)

ng Ng 
(“some”)

700

Sugar 
(g)

20 13 0 125 0 0 0 0 0
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of flour (250, 300, 375, 250, 180, 250, 250, 350,
180, 303, 333), so that the butter/flour ratios are:
250/750,  300/800,  375/875,  250/750,  180/680,
250/750,  250/750,  350/850,  180/680,  303/803,
333/833. 
A  calculator  displaying  (for  example)  10  digits
would find these ratios equal to:  0.3333333333,
0.3750000000,  0.4285714286,  0.3333333333,
0.2647058824,  0.3333333333,  0.3333333333,
0.4117647059,  0.2647058824,  0.3773349938,
0.3997599040. In this list, the rounding of ratios
has been done correctly (NIST, 2019; Yale, 2023),
but the number of  digits (10) is arbitrary,  and a
more meaningful approach should be based on:
-  the  uncertainties  about  the  mass  of  the
ingredients,
-  or  the  possible  perception  of  differences  in
flavour:  if  no  difference  is  perceived  with  pie

crusts for which the butter/flour ratio differs only
by the second digit, for example, it is proper to
avoid this digit  (as long as it  is  explained why
this is done). Finally it has to be added that for
the  graphical  display  of  ratios  (Kamat  et  al.,
2014),  the size of data points must be chosen
according to the number of  digits:  in Figure 1,
the size of the blue bars is based on the use of
the arbitrary  (and perhaps bad)  choice of  only
two digits. 
While the mean quantitatively locates the most
likely value of the variable for the population, the
standard deviation measures the extent  of  the
distribution of the values of the variable around
the mean. Here, using a 15-digit calculator, we
could  calculate  a  standard  deviation  equal  to
0.0546393131  for  the  10  recipes.  But  once
again,  this  number  of  digits  is  arbitrary  and
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Figure 1. Butter proportions for some classic pie crust recipes. The data points are displayed twice:
in blue, the lines take into account the possible variations associated to a number or digits equal to
2. In red, in the middle of these blue lines, the excessively small red dot represent the values with 15
digits (they are barely visible, because too small).
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meaningless,  especially  considering  that
quantities in pastry-making are rarely known to an
accuracy of less than 1 g. Mentally, many people
would  prefer  to  write  0.05  for  this  standard
deviation, but are they right? Should they instead
write 0.054? or 0.055? or 0.0546? Here again, a
reason  is  needed  to  decide,  but  before
considering  it,  in  silico experiments  will  be
examined  to  better  appreciate  the  value  of
averages and standard deviations for samples.

2. The diversity of means of samples, and the
high  diversity  of  estimated  standard-
deviations (for samples)

What is given - with rigorous demonstrations - in
statistics  courses  will  not  be  repeated  here
(Moore and McCabe, 1989; Evans and Rosenthal,
2006), but a numerical exploration of the question
will be made, in order to convey two main ideas
(one for the mean and the other for the standard
deviation) that will have to be kept in mind when
solving  the  issue of  the  significant  digits  of  the
mean and of the standard deviation for samples.

2.1. For the mean
 
Here the difference between a population and a
sample is first needed. A population P is a set of
elements, which will  be noted Ii,  i = 1..n (Figure
2) . Each element  i can be characterized by the
values xi, yi, zi, etc. of the variables x, y, z, etc. For
pie crust  recipes,  P could be a library,  and the

elements  would  be  particular  recipes  of  pie
crusts  from  books  in  that  library.  For  each
recipe,  the  variables  could  be  the  amount  of
flour, butter, water, salt, sugar, etc.
In order to describe the population P, the data
can be organized in a table (Table 2). However
such  a  table  can  become  very  cumbersome
when the number of elements and the number of
variables are large. The mean and the standard
deviation  are  used  to  describe  the  population
more concisely. 
For calculating the arithmetic mean of a variable
(for  example  the  butter / flour  ratio  r)  for  the
elements (recipes) in the population (all culinary
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Figure 2. A population is a set, with a finite or
infinite number of elements (I1, I2, I3, etc.).

Table 2. The data for a population P.

Elements (recipes) Variable x

(for example, the 

quantity of flour)

Variable y

(for example, the 

quantity of butter)

Variable z

(for example, the 

quantity of sugar)

Etc.

I1 x1 y1 z1

I2 x2 y2 z2

... ... ... ...

In xn yn zn
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books  in  the  library),  the  values  taken  by  the
variable r are summed and divided by the number
n of elements of the population:

μ=
∑
i=1

n

r i

n

                                            (Equation 1).

The  mean,  also  known  as  the  average,  is  the
point that one would see from a distance on an
axis on which the values of the butter / flour ratios
r would be displayed (Figure 3).

In science and technology, the question is often to
find  a  relationship  between  the  mean  of  the
values of a variable for a sample and the mean for
the  population  from which  that  sample  is  taken
(Moore and McCabe, 1989).  Here,  for  example,
the question would be to examine only 3 recipes
from the  library  in  order  to  get  an  idea  of  the
butter / flour ratio in all recipes of pie crusts from
the books in the library. 
This  question  is  omnipresent  in  scientific  and
technological practice. One of the most common
examples  is  when  determining  the  mass  of  an
object using a balance. Even if the balance has a
high precision (for example, giving measurements
to the nearest hundredth of a milligram), the real
mass  of  the  object  weighed  cannot  be  known
because of the many causes of error (electronic
noise, vibrations, disturbances in the ambient air,
etc.)  or  the  limited  accuracy  of  the  balance
(Harris, 2014). 
Students often ask why it is impossible to find
the true mass, and the following answer is can

be given.  Suppose that  the accuracy of  the
balance is 0.001 g and that a value 12.304 g
is displayed: this means that the mass can be
between  12.3035  g  and  12.3045 g.  The
number  of  real  numbers  in  the  real  interval
[12.3035-12.3045]  is  infinite,  so  that  the
probability  that  the  true  mass  would  be
exactly  12.304 (that  is  12.304000… with an
infinite numbers of 0) is nil (remember that the
probabilities  are  defined  by  the  ratio  of  the
number of favourable cases by the number of
possible cases). 
This being established, it can be observed that
by repeating the measurements n times with the
same  balance,  a  series  of  values  {mi}  is
obtained, where i is an integer between 1 and n.
For  this  set,  the  arithmetic  mean of  the  mass
values  displayed  by  the  balance  can  be
calculated  as  it  was  done  for  the  butter/flour
ratio.  This  average  value  is  different  from  the
true (unknown) mass M, and it is also likely to be
different from the mean of the masses measured
after  another  group  of  measurements  of  the
same mass. 
The question that we want to illustrate now
numerically is to see how the samples means
differ from each other and from the mean for
the  whole  population.  To  study  this  more
quickly than using a real balance, an in silico
reproduction  of  mass  measurements  is
proposed: a normal population (of the results
that the balance would give) of masses mi is
first created with a mean (for the population)
μ equal to 100, and a standard deviation of 1
(reproducing  the  fluctuations  of  a  scale,
admittedly imprecise for this example).
As it would be done in a chemistry laboratory,
the object is “weighed” 3 times: this means
that 3 values are taken at random from the
normal  population  (in  Maple language,  this
can  be  done  using  the  “rand”  function)
(Maple, 2024); the mean (for the sample) of
the  3  values  is  then  calculated.  If  another
group of three “digital mass measurements”
is  extracted  from  the  same  normal
population,  another  sample  mean  is
calculated.  And  so  on:  using  a  small

 International Journal of Molecular and Physical Gastronomy. 2024, 10(1), 8, 1-15
Open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) 

                                   6

Figure  3.  Top:  Results  of  the  different
butter / flour ratios from a particular library as
displayed on an axis. The mean would appear
as one dot when looked from far away (bottom).
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computer program (Figure 4), this process of
“weighing  three  times”  can  be  reproduced
systematically, for example 200 times.
The results of such an experiment are shown
in  Figure  5:  all  the  means  are  (of  course)
around 100,  but  they are mainly  distributed
between 99 and 101. Statistics courses can
describe  this  more  formally  (Reif,  1967;
Moore and McCabe, 1989), but the aim here
is different:  it  is only to give an idea of the
precision needed to express the mean. Note
here that  as the interval  [99 - 101]  is  much
larger  than  the  precision  given  by  the
calculator (10 -15), there is no point in using 15
digits (unless when an explicit goal requiring
them is set). 
These first  results can be compared with what
would  be  obtained  if  the  means  for  6  “digital
mass measurements” were calculated, again for
200  experiments,  or  if  15  “digital  mass
measurements”  were  made  for  each  sample
(Figure  6):  the  distribution  of  sample  means
narrows  around  the  population  mean  (let  us
repeat:  100,  fixed  by  the  construction  of  the
example). 

2.2. For the standard deviation
 
For the standard deviation, the same  in silico
experiment can be carried out as for the mean,
which leads to the following idea: the standard
deviation for samples is only an estimate of the
order  of  magnitude  of  the  dispersion  of  the
data. 
But more details are needed now. First of all, it is
important  to  distinguish  the  standard  deviation
for a population and the that for a sample used
to estimate the characteristics of the population
(Moore and McCabe, 1989). It must be stressed:
a  group  of  three  mass  measurements  can  be
considered as a group in itself (a population), or
as  a  sample  that  is  used  for  estimating  the
unknown  characteristics  of  a  whole,  larger,
population from which this sample is extracted.
First,  when  the  group  is  considered  as  a
population  in  itself,  the  expression  of  the
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Figure 4. The flowchart for making the figure 5.

 

Figure  5.  The  200  sample  means  calculated
after  drawing  randomly  3  samples  from  a
normal population with mean 100 and standard
deviation 1.
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variance  v is the expected value of the squared
deviation from the mean of the masses relative to
the  average  mass  <m> for  the  group  of  three
values:  

v=1
3 ∑i=1

3

(mi−<m> ) ²                        (Equation 2).

For this (small) population, the standard deviation
is : 

σ=√ 1
n
∑
i=1

n

(mi−<m> ) ²                     (Equation 3).

Here,  the  denominator  used  is  n,  because  we
consider this group as a population that we want
to characterize as a population, independently of
the  whole  population  of  possible  outcomes  of
measurements. 
But,  as  said  above,  this  small  group  of  3
measurements can be also used to estimate the
standard deviation Σ of the whole population from
which the 3 masses are extracted (the mean of
this larger population would be  Μ). In this case,
the Equation 3 would be “biased”, and a “good”
estimator of the standard deviation  Σ of the large

population is rather: 

sd=√ 1
n−1∑i=1

n

(mi−m̄ ) ²                  (Equation 4),

with  n = 3 in the particular example chosen. In
this  equation,  m is  the  mean  for  the  sample
(different  from  the  unknown  mean  M for  the
whole population). 
Having  established  this,  the  previous  in  silico
experiment  can  be  repeated,  again  using  a
normal population of average value equal to 100
and a standard deviation equal to 1. From this
population, 3 samples are chosen at random 200
times  and,  for  each  group  of  3  “digital  mass
measurements”,  the  estimated  standard
deviation is calculated. The results are shown in
Figure 7. 
The  variability  of  the  estimated  standard
deviations is high. Of course, they are all around
the  standard  deviation  of  the  population
(remember that this was chosen to be equal to
1),  but  it  appears  clearly  that  one  estimated
standard deviation chosen at  random can only
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Figure 6. The bigger the samples, the closer their mean is from the mean for the population. Left
and right, the means for 200 groups of 6 and 15 measurements respectively are extracted from the
same population, as in Figure 5. 
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give an order of magnitude of the value that we
want  to  estimate:  consequently,  it  makes  no
sense writing many digits to express a standard
deviation  used  for  estimating  the  standard
deviation of a population. 
Once  this  result  has  been  obtained,  estimated
standard  deviations  for  larger  samples  can  be
calculated: 6 measurements in Figure 8 top, and
15 in Figure 8 bottom. The larger the samples, the
closer  the  estimated  standard  deviations  are  to
the standard deviation of the population.

3. Significant figures for means and standard
deviations

The objective initially set can now be achieved: to
formally  determine  how  many  significant  digits
should  be  displayed  for  sample  means  and
estimated  standard  deviations.  This  question
arises  each  time  measurements  are  made,  but
many  people  hesitate  over  the  answer.  In  this
paragraph,  simple  examples  will  be  analysed,
using  official  documents,  before  giving  a  clear
answer to the question. 
When  there  is  some  uncertainty  in  the
measurements, such as when using a balance
to determine mass, or when using a sample of
recipes to find the butter /flour ratio to use in pie
crust recipes, the last significant figure should be
an  estimate  of  the  uncertainty  of  the
measurement  (Bell,  1999;  BIPM,  2008).  The
definitions given in Figure 10 are taken from the
internationally shared Guide to the expression of
uncertainty  in  measurement  (GUM)  of  the
Bureau  International  des  Poids  et  Mesures
(BIPM,  2008).  In  particular,  the  last  significant
digit  given  in  a  value  should  indicate  the
uncertainty of the value.
Before doing the maths, let us observe that if you
search the internet,  you will  find (1)  pages that
give rules without explanation nor justification (for
example,  Chem21  labs,  2024;  LibreTexts
Chemistry, 2024), (2) pages that give erroneous
or dubious indications (for example, Sribbr, 2024),
(3) pages that give so many different indications
that  readers  are  lost  (Quora,  2024),  (4)  some

interesting  articles  that  nevertheless  forget  to
refer  to  the  international  conventions
(Cousineau, 2020). 
As mentioned above, a recommendable strategy
is to understand what one is doing rather than
blindly following rules, which is why the solution
to the rounding problem should be done using
the GUM. A (very common) special case will be
examined  first,  before  calculating  other
examples, and ending with the description of the
pie crust. 

3.1 A general solution in the particular case
of three measurements
  
In  this  paragraph,  the  example  of  mass
measurements is used to apply the information
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Figure  7.  The  estimated  standard  deviations
for  groups  of  3  mass  measurements  can  be
very different from one another, and also from
the  standard  deviation  (equal  to  1)  for  the
population  from  which  these  samples  were
extracted:  this  means  that  the  estimated
standard deviation for a small sample is only
an  order  of  magnitude  of  the  standard
deviation for the population. 
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from the GUM, in order to determine the number
of digits for the mean and the estimated standard
deviation. 
Let us assume that we use a balance to measure
the mass of an object, and repeat this three times,
giving  the  values  m1,  m2,  m3 known  with
respective  uncertainties  Δm1,  Δm2,  Δm3.  The
mean  (mean)  and  the  estimated  standard
deviation (sd) for this sample are defined by:

mean=1
3

(m1+m2+m3 )                      (Equation 5),

and: 
sd=      

  √ 1
2 ( (m1−mean ) ²+ (m2−mean ) ²+ (m3−mean ) ² )

(Equation 6)
The mean and the estimated standard deviation
being functions of the three variables m1,  m2,  m3,
the  uncertainties  can  be  propagated  using  the
rules given by the GUM. If the same scale and the
same measurement  conditions are used for  the
three mass determination, the three uncertainties
Δm1,  Δm2,  Δm3 can be considered to be equal,
and  written  Δm (the  calculation  with  different
uncertainties  would  be  only  slightly  more
complex). According to the GUM, the uncertainty
for a function  f(x1, x2, ..., xn)  with real values of  n
variables  x1, x2, ..., xn, known  respectively  with
uncertainties Δx1, Δx2, ..., Δxn is: 

Δf ( x1 , x2 , ... , xn )=√∑i=1

n

( ∂ f∂ xi ) ² Δx i ² (Equation 7),

where the ( ∂ f∂ xi ) are the partial derivatives of the

function f relative to the real variable xi.
In the case of mass measurements, applying the
equation 7 to the mass measurements gives the
uncertainty Δmean: 

Δmean=√∑i=1

3

( ∂mean∂mi ) ² Δmi ²         (Equation 8).

In order to calculate it, the partial derivatives have
to be calculated first. For example for m1:

∂mean
∂m1

=
∂ [ 1

3
(m1+m2+m3 )]

∂m1

=1
3

      (Equation 9).

The result is the same for the two other variables
m2  and  m3. So that the uncertainty of the mean
is: 
Δmean=    

 √( 1
3 ) ² . Δm ²+( 1

3 ) ² . Δm ²+( 1
3 ) ² . Δm ²= 1

√3
Δm
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Figure  8.  Display  of  200 estimated standard
deviations for samples of 6 individuals (top),
and 200 standard deviations for samples of 15
individuals (bottom).
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                                                       (Equation 10).
As  this  uncertainty  if  of  the  same  order  of
magnitude  as  the  uncertainties  on  masses,  the
mean should have the same number of significant
figures as the measurement results. 
For  the  estimated  standard  deviation,  the
calculation is of the same kind. First the definition
of the standard deviation has to be developed in
the particular case that is considered:
sd=  

√ 1
2 ( (m1−mean ) ²+ (m2−mean ) ²+ (m3−mean ) ² )(

  Equation 11). 
This can also be written as:
sd=  

√ 1
2 ((m1−

1
3

(m1+m2+m3 )) ²+(m2−
1
3

(m1+m2+m3 )) ²)
+(m3−

1
3

(m1+m2+m3 )) ²                 (Equation 12).

As  the  estimated  standard  deviation  sd is  a
function  of  the  three  masses  m1,  m2,  m3,  the
partial  derivatives have to be calculated, finding
the equation given in Figure 9. 

As for  the mean,  this  expression indicates the
number  of  significant  figures  that  one  can
display: all figures have to be certain, except the
last  one.  The  result  will  now  be  explored  in
particular cases. 

3.2. Particular cases and the solution for the
pie crust recipes
 
Example  1  :  a  small  difference  between  the
measurements, and a small uncertainty.
Let us consider the three values: 15.333, 15.334,
15.335.  In  order  to  calculate  the  number  of
significant  figures  for  the  estimated  standard
deviation, one uses the formula that was found,
replacing the letters by the data.  An estimated
standard deviation is found equal to 10-3, and an
uncertainty  equal  to  7.07  10-4,  whose order  of
magnitude  is  10-3.  It  means  that  the  standard
deviation should have only one digit.
 
Example 2: a large difference for the data, with a
small uncertainty: 
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Figure 9. The full expression for the uncertainty of the estimated standard deviation. 
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Let  us  consider  the  values  155.323,  151.401,
148.577.  Here,  we  calculate  an  estimated
standard  deviation  equal  to  3.39,  but  an

uncertainty of 7.07 10-2, i.e. about 10-1. Here one
can give two significant figures for the standard
deviation: 3.4. 
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Figure 10. An extract from the GUM (BIPM, 2008). 
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Example 3 : a small difference between data, and
large uncertainty. 
Let us have the values 219.2, 220.1, 200.1. One
calculates a standard deviation equal to 11, and
an  uncertainty  of  7.07  10-2,  which  makes  3
significant  digits  for  the  estimated  standard
deviation. 

Example 4: 
Simple  reasoning  and  applying  the  official
definitions  can  avoid  lengthy  searches  on  the
internet, about how practically the mean and the
estimated standard deviation can be calculated,
instead  of  using  arbitrary  rules.  As  a  final
application, we propose to observe that in Harris
(2014),  an  often  quoted  textbook  for  analytical
chemistry, it  is written about digits in a sum : "If
the numbers being added do not have the same
number of significant figures, we are limited by the
least-certain  one.  For  example,  the  molecular
mass of KrF2 is known only to the third decimal
place, because we only know the atomic mass of
Kr  to  three  decimal  places".  And  the  author
considers, as an example, the sum 18.998 403 2
+18.998 403 2 + 83.798, with the result 121.794
806 4, of which it is said: "The number 121.794
806 4 should be rounded to 121.795 as the final
answer." For sure, the Harris textbook is a good
one, but why this rule? From what was given in
this  article,  the  Harris  rule  can  be  understood,
observing  that  the  sum  is  a  function  of  two
variables that can be differentiated:

df ( x , y )= ∂ f
∂ x
dx+ ∂ f

∂ y
dy                (Equation 13).

Moving  to  uncertainties,  one  can  write  (GUM,
2008): 

Δf=√(( ∂ f∂ x ) ² Δx ²+( ∂ f∂ y ) ² Δy ²)     (Equation 14).

Here, the sum S can be written: 
S=2a+b                                         (Equation 15).
So that: 
 ΔS=√ ( (2 ) ² Δa ²+ (1 ) ² Δb ² )             (Equation 16).
The  significant  figures  are  given  by  this
uncertainty. For the example from Harris (2014),
one  would  calculate  an  uncertainty
0.001000002000, which is almost the greatest of

the uncertainties  for  the terms of  the sum:  no
"rule"  was  to  be  applied.  More  generally,  one
would be wise to recall that the scientific activity
is  not  based  on  rules,  but  rather  on
understanding deeply what one does.

Example 5:
Finally,  the  correct  expression  of  the  butter  to
flour  ratios for  pie crust  recipes can be found.
Remember that  two kinds of  expressions were
envisioned: 
-  the uncertainty  of  the mass determination of
the ingredients,
-  or  the  possible  perception  of  differences  of
flavour.

For the first case, ratios  r=
mb
mf

 are considered:

they are functions of two variables  mb (mass of
butter)  and  mf  (mass  of  flour),  so  that  the
uncertainty on r is: 

Δr (mb ,mf )=√( ∂r∂mb ) ² Δmb ²+( ∂r∂mf ) ² Δmf ² 

    (Equation 17)

Here, 
∂r
∂mb

 is simply equal to 
1
mf

, while 
∂r
∂mf

 is

equal to 
−mb
mf ²

. Hence the final expression:

Δr (mb ,mf )=√ 1
mf

² Δmb ²+(
−mb
mf ²

) ² Δmf ²

(Equation 18)
In the kitchen, using a measuring cup for taking
flour, the precision is about 20 g, and for butter a
kitchen scale can have a precision of 5 g. Using
these  values,  it  appears  (please  do  the
calculation)  that  only  the  first  digit  (3)  is
significant: the average butter/flour ratio is 0.3.
About the differences in perception, a literature
survey  did  not  give  any  answer,  so  that  the
experiment remains to be done: can consumer
perceive the difference between two pie crusts
with 0.300 and 0.301 butter/flour ratio?  Between
two  pie  crusts  with  0.30  and  0.31  butter/flour
ratio? Between two pie crusts with 0.3 and 0.4
butter/flour ratio? 
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4. Conclusion

In  the  past,  applying  the  GUM  rules  was
somehow  cumbersome,  because  in  practical
cases,  such  as  laboratory  experiments,  the
propagation  of  uncertainties  needs many steps,
sometimes  with  long  analytical  expressions
(remember  Equation  11  for  a  simple  case).
Nowadays, software for formal calculation makes
it easier.  Anyway, the more important conclusion
of this course is: apply rules that you understand.
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