Note-by-Note & Food Waste 4-element savory dish with ingredients from food waste

By Leonardo Daniel VILLEGAS HERNANDEZ (D22126835)

Course: Advanced Molecular Gastronomy (TFCS 9025)

Lecturers: Róisín Burke and Pauline Danaher

Submission date: May 8th, 2023

Table of Contents

Introduction	2
Aim and Objectives	
Materials and Methods	3
Results	7
Discussion	10
Conclusions	13
References	13
Logbook	15

List of Tables

Table 1. Cheese sauce formula	3
Table 2. Tomato sauce formula	4
Table 3. Carrot Spaghetti formula	5
Table 4. Tuile formula	6
Table 5. Physicochemical structure of the dish	8
Table 6. Sensory descriptors	9
Table 7. Functional properties of the ingredients in the cheese sauce	10
Table 8. Functional properties of the ingredients in the tomato sauce	11
Table 9. Functional properties of the ingredients in the spaghetti	11
Table 10. Functional properties of the ingredients in the tuile	12

List of Figures

Figure 1. Production process, cheese sauce	4
Figure 2. Production process, tomato sauce	5
Figure 3. Production process, carrot spaghetti	6
Figure 4. Production process, tuile	7
Figure 5. Note-by-note dish with 4 elements	7
Figure 6. Note-by-note dish with 4 elements	8

Introduction

According to the Food Waste Index Report 2021, 17% of food production is wasted worldwide. In homes, 61% of this waste is produced; 26% comes from restaurants and food service, and 13% from retail and convenience stores (United Nations Environment Programme, 2021).

The Waste and Resources Action Program (WRAP) reports that restaurants are not completely involved in tackling food waste. Incorrect storage, improper handling of food products, excessive portions, and leftovers on plates are some of the causes of waste in the food service sector (Sakaguchi, et al., 2018). Therefore, it is therefore important to raise awareness in this sector in order to solve this problem.

Fruits and vegetables have the highest percentage of waste among all food types, with 21.6% (Dalal, et al., 2020). Global fruit production reached over one billion tons in 2017, generating large amounts of by-products and residues. Fruit injuries, bruising, and over-ripening are some of the reasons for the waste (Lucarini, et al., 2021).

In addition to the loss of edible food, wasted fruits and vegetables also result in the loss of labor, energy, chemicals used as fertilizers, land, water, and bioactive components (Dalal, et al., 2020).

The fruit and vegetable processing sector produces large quantities of byproducts such as peels, seeds, and rinds (Basri, et al., 2021). These byproducts can be used to obtain pigments, fibers, organic acids, phenols, antioxidants, and other molecules of interest (Dalal, et al., 2020).

Pectin is a polysaccharide used as a stabilizer and gelling agent for food applications such as beverages, jams, and jellies. It can be extracted by chemical or enzymatic methods from fruit peels. (Venkatanagaraju, et al., 2019).

Methylcellulose is a polysaccharide that forms gels when heated. This ingredient comes from cellulose found in plants, wood, fruits, and vegetables. For example, cellulose is found in apples and carrots (Choudhury, et al., 2022).

Based on the statistics presented above, this work consists of the creation of a savory dish with four elements using pectin and methyl cellulose as ingredients with the aim of raising awareness of the importance of the problem of food waste in the food service sector. The four elements were designed using the note-by-note technique used in molecular gastronomy.

Aim and Objectives

Aim

To develop a note-by-note savory dish of four elements using ingredients obtained from fruits and vegetable by-products.

Specific Objectives

- 1. Conduct bibliographic research on pure compounds and by-product molecules to apply in a savory recipe.
- Design, test, and set final formulae of a cheese sauce, tomato sauce, spaghetti, and tuile applying pure compounds and byproduct molecules.
- 3. Set up the conditions for preparing the recipe in a kitchen environment using knowledge of molecular gastronomy.
- 4. Design the dish plating.

Materials and Methods

Table 1 shows the formulation of the cheese sauce. This sauce is formulated with methylcellulose and other ingredients such as lactose, whey and casein protein, starch, oil, and flavors. The cooking process is described in Figure 1.

INGREDIENT	PURE COMPOUND	g	Suppl ier
Water	H2O	271.50	
Canola oil	α-linolenic acid (6-14%) Oleic acid (50-65%) Saturated fatty acids (7%)	100.00	
Lactose	Glucose Galactose	30.00	MSK
Whey protein	β-lactoglobulin α-lactalbumin Bovine Serum Albumin Glycomacropeptide	25.00	BP

Table 1. Cheese sauce formula.

	Immunoglobulins		
	α-casein		
Casein protein	β-casein	25.00	BP
	к-casein		
Starch	Amylose (20-30%)	25.00	Gem
Startin	Amylopectin (70-80%)	25.00	Uem
	Phosporic acid		
Lecithin	Cholines	5.00	MSK
Lectum	Esters of glycerol	5.00	MOR
	Fatty acids		
Salt	NaCl	5.00	
Albumin	Albumin	5.00	SOSA
	Diacetyl		
Natural aroma gouda	2-and 3-methylbutanal		
cheese	2-methylpropanal	5.00	SOSA
cheese	Acetic acid		
	Butyric acid		
Sodium citrate	Sodium citrate	2.50	MSK
	Acetic acid		
Cheddar flavour	Butyric acid	1.50	MSK
	Caproic acid	1.50	MJK
	Caprylie acid		
Methylcellulose	Methyl ether of β-D-glucose chains	1.00	Sosa
Lactic acid	Lactic acid	0.30	MSK

Figure 1. Production process, cheese sauce.

Table 2 shows the formulation of the tomato sauce. This sauce is formulated with pectin, methylcellulose, and other ingredients such as sucrose, spices, and tomato powder. The cooking process is described in Figure 2.

INGREDIENT	PURE COMPOUND	g	Suppli er
Water	H2O	408.5	
Tomato powder	Glucose Fructose Citric acid Malic acid Glutamic acid 2-methoxyphenol	37.5	SOSA
Sucrose	Lycopene Glucose Fructose	20	
Olive oil	Tryglicerides Free fatty acids	15	
High Methoxyl Pectin	Methyl esters of polygalacturonic acid	5	SOSA
Salt	NaCl	5	
Onion powder	Allicin	1	Schwar tz
Oregano powder	Carvacrol	1	Schwar tz
Basil powder	Estragole	1	Schwar tz
Methylcellulose	Methyl ether of β-D-glucose chains	0.5	SOSA
Black pepper powder	Piperine	0.5	Schwar tz

Table 2. Tomato sauce formula.

Figure 2. Production process, tomato sauce.

Table 3 shows the formulation of carrot spaghetti, whose main ingredient is agar-agar. Figure 3 describes the elaboration process.

INGREDIENT	PURE COMPOUND	g	Suppli er
Water	H2O	150	
	Sucrose		
	Glucose		
	Xylose		
	Fructose		
Carrot powder	Cellulose	10	SOSA
	Hemicellulose		
	Ligin		
	Glutamic acid		
	β-carotene		
A	Agarose	2.7	SOSA
Agar-agar	Agaropectin	Ζ.Ι	303A
Salt	NaCl	1	

Table 3. Carrot Spaghetti formula.

Figure 3. Production process, carrot spaghetti.

The last component of the dish is a tuile. The formulation is shown in Table 4 and the process in

Table 4. Tuile formula.

Figure 4. Production process, tuile.

Results

Figure 5. Note-by-note dish with 4 elements.

Figure 6. Note-by-note dish with 4 elements.

The savory dish is constituted of four elements: (i) cheese sauce, (ii) tomato sauce, (iii) carrot spaghetti, and (iv) tuile.

Table 5 summarizes the main physicochemical structure of each element of the dish. A more detailed explanation of the structure is provided in the *discussion section*.

Element	Main physicochemical structure	
Cheese sauce	Emulsion O/W	
Tomato sauce	Solid suspension and gel	
Carrot spaghetti	Gel	
Tuile	Solid foam	

Table 5. Physicochemical structure of the dish.

Sensorial analysis

No formal sensory evaluation was conducted. However, some sensory descriptors for each element of the dish are shown below.

Element	Main physicochemical structure
Cheese sauce	White color, typical cheese aroma, creamy and thick texture. The cheese flavor could be highlighted more.
Tomato sauce	Red color, typical tomato aroma and flavor similar to Bolognese sauce. The texture is perceived pulpy.
Carrot spaghetti	Transparent orange color, no aroma, solid texture, carrot flavor. The carrot flavor could be highlighted more.
Tuile	No flavor.

Table 6. Sensory descriptors.

Plating

The plating was intended to simulate an island of garbage in the sea. The spaghetti (in the center) represents the island while the tuile (on top of the spaghetti) the garbage. The cheese sauce (small dots on one side) is the white foam formed in the ocean due to all the chemicals and other substances dumped into the water. The tomato sauce represents the increase in ocean temperature.

Although plating has an inspiration in waste in the ocean, it has a correlation with food waste and other residues from the food industry.

According to Power Knot (2021), some food waste is dumped into the ocean, and these products often contain pesticides, hormones, antibiotics, or preservatives. These chemicals bioaccumulate and contaminate the water, affecting marine life and the fishing industry. In addition, food production emits greenhouse gases that increase the temperature of the planet and, therefore, of the oceans. Lastly, some packaging used to preserve food ends up in the ocean if they are not biodegradable. This has

caused the accumulation together with other types of residues the formation of garbage islands in the ocean.

Discussion

Cheese sauce

The cheese sauce can be defined as an emulsion O/W. Table 7 shows the functional properties of each ingredient and which phase of the system they are part of.

INGREDIENT	FUNCTIONAL PROPERTY	PHASE
Water	continuous phase. Dispersion of powders and solvent of polar substances. Proteins interact with water and form water suspensions. (Sołowiej, 2020)	Continuous
Canola oil	Main constituent of the dispersed or discontinuous phase. Texture development and palatability (Sołowiej, 2020).	Dispersed
Lactose	Solids and sweetness contribution (Sołowiej, 2020).	Continuous
Whey protein		Interface & continuous
Casein protein		Interface & continuous
Starch	Viscosity development and water binding. Helps to prevent syneresis. Amylopectin provides a	Continuous

Table 7. Functional properties of the ingredients in the cheese sauce.

	smooth texture (Sołowiej, 2020).	
Lecithin	Emulsifier. Helps to prevent phase separation. Surrounds the oil droplets and suspends them in the aqueous phase (Kerry Health and Nutrition Institute, 2021).	Continuous
Salt	Flavor enhancer.	Continuous
Albumin	Texture and palatability improvement (Food Navigator, 2022).	Continuous
Natural aroma gouda cheese	Provides stronger or richer cheese aroma (Sołowiej, 2020).	Continuous
Sodium citrate	Buffering. Increases hydration of casein micelle (Pastorino, et al., 2003).	Continuous
Cheddar flavour	Provides stronger or richer cheese flavour (Sołowiej, 2020).	Dispersed
Methylcellulose	Reversible thermogelation. Provides viscosity and texture improvement (Bakhsh, et al., 2020).	Continuous
Lactic acid	Acidification and flavor development (Sołowiej, 2020).	Continuous

Tomato sauce

The tomato sauce can be defined as a solid suspension and liquid gel. Methylcellulose and HM Pectin help to create the tridimensional matrix trapping the water and solids. Table 8 shows the functional properties of each ingredient.

Table 8. Functional properties of the ingredients in the tomato sauce.

INGREDIENT	FUNCTIONAL PROPERTY	PHASE
Water	Main constituent of the continuous phase. Dispersion of powders and solvent of polar substances (Sołowiej, 2020).	Continuous
Tomato powder	Provides flavor, color, sweetness, and texture. It gives the main sensory characteristics to the sauce.	

Sucrose	Solids and sweetness contribution.	Continuous
Olive oil	Flavor development.	Dispersed
HM Pectin	Gelling agent (Seshadri, et al., 2003).	Continuous (gel)
Salt	Flavor enhancer.	Continuous
Methylcellulose	Reversible thermogelation. Provides viscosity and texture improvement (Bakhsh, et al., 2020).	Continuous (gel)
Spices	Flavor development.	Continuous

Carrot Spaghetti

The carrot spaghetti can be labeled as a solid gel. Agar-agar is responsible for providing the texture. This hydrocolloid hydrates when hot and forms a solid gel when cooled. Table 9 summarizes the functionality of each component.

INGREDIENT	FUNCTIONAL PROPERTY	PHASE
Water	Main constituent of the continuous phase. Dispersion of powders and solvent of polar substances (Sołowiej, 2020).	Continuous
Carrot powder	Provides flavor, color, sweetness, and texture. It gives the main sensory characteristics to the sauce.	
Agar-agar	Agar helps gel, stabilize, texturize, and thicken food applications. To form the gel, the gum must be heated and allowed to cool (Marcus, 2013).	Continuous
Salt	Flavor enhancer.	Continuous.

Table 9. Functional properties of the ingredients in the spaghetti.

Tuile

For preparing the tuile, it needs starch and gluten. Table 10 shows the functionality of each ingredient.

Table 10. Functional properties of the ingredients in the tuile.

INGREDIENT	FUNCTIONAL PROPERTY	PHASE
Water	Main constituent of the continuous phase. Dispersion of powders and solvent of polar substances (Sołowiej, 2020).	Continuous
Starch	Viscosity development and water binding (Sołowiej, 2020).	Continuous
Gluten	It gives a firm texture and absorbs twice its weight in water (Pareyt, et al., 2008).	Continuous
Salt	Flavor enhancer.	Continuous.

As can be seen in the information presented above, each ingredient has a function in structuring the elements of the dish. Ingredients manufactured with fruit and vegetable wastes were successfully incorporated into the recipe. The methylcellulose and pectin were responsible for achieving the textures in the sauces.

Sensory analysis was not conducted due to the small quantities produced and the limited time. However, the main descriptors are shown in the results section. It is important to highlight that although the dish tastes good, improvements in the flavoring need to be made to simulate a real culinary dish.

The plating has succeeded in simulating the waste in the sea. The correlation of this concept with food waste is explained in the results section.

Employing the technique note by note proved challenging at first. Nevertheless, understanding the function of each component helped to create the recipes in a simpler way.

Conclusions

A savory dish could be recreated using the note-by-note technique by incorporating ingredients made from fruit and vegetable waste. The plating sought to raise awareness of the role of the food industry in the care of the seas and oceans. Although the elements were well achieved in texture, the flavor could be improved.

For further research, the use of flavor with modifying properties (FMPs) can be explored to boost the flavor. In addition, the substitution of tomato

powder can be developed with the incorporation of colorants, flavorings, and the addition of acids.

References

United Nations Environment Programme, 2021. *Food Waste Index Report,* s.l.: UN.

Sakaguchi, L., Pak, N. & Potts, M. D., 2018. *Tackling the issue of food waste in restaurants: Options for measurement method, reduction and behavioral change,* s.l.: Journal of Cleaner Production.

Sołowiej, B. G., 2020. Cheese sauces: Characteristics of ingredients, manufacturing methods, microbiological and sensory aspects. *Food Process Engineering.*

Kerry Health and Nutrition Institute, 2021. Why is Lecithin in my Food?' An Overview of Emulsifiers. [Online]

Available at: https://khni.kerry.com/news/blog/why-is-lecithin-in-my-food-anoverview-of-emulsifiers/

[Accessed 2023 May 5].

Food Navigator, 2022. *Albumins.* [Online] Available at: <u>https://www.foodnavigator.com/Article/2022/06/28/albumin-</u> <u>substitute-developed-from-legume-wastewater-just-like-egg-protein-it-binds-</u> <u>emulsifies-and-foams#</u> [Accessed 5 May 2023].

Pareyt, B. et al., 2008. The role of gluten in a sugar-snap cookie system: A model approach based on gluten-starch blends. *Journal of Cereal Science*.

Venkatanagaraju, E. et al., 2019. Extraction and Purification of Pectin from Agro-Industrial Wastes. In: *Pectins - Extraction, Purification, Characterization and Applications.* s.l.:IntechOpen.

Pastorino, J., Hansen, C. & McMahon, D., 2003. Effect of Sodium Citrate on Structure-Function Relationships of Cheddar Cheese. *Journal of Dairy Science*.

Bakhsh, A. et al., 2020. Novel Approach for Tuning the Physicochemical, Textural, and Sensory Characteristics of Plant-Based Meat Analogs with Different Levels of Methylcellulose Concentration. *Foods.*

Choudhury, A. et al., 2022. Polysaccharides Obtained from Vegetables: an effective source of alternative excipient. *Pharmacopuncture.*

Lucarini, M. et al., 2021. Fruit Wastes as a Valuable Source of Value-Added Compounds: A Collaborative Perspective. *Molecules*.

Marcus, J. B., 2013. Food Science Basics: Healthy Cooking and Baking Demystified. *Culinary Nutrition.*

Basri, M. et al., 2021. Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies Used for Bioactive Compound Extraction. *Polymers.* Dalal, N., Neeraj, V. B. & Dhakar, U., 2020. Potential of fruit and vegetable waste as a source of pectin. *International Journal of Chemical Studies.*

Seshadri, R., Weiss, J., Hulbert, G. J. & Mount, J., 2003. Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions. *Food Hydrocolloids.*

Logbook

Molecular Gastronomy

Note-by-note Week 1 Student Name: Leonardo Daniel VILLEGAS HERNANDEZ Date: March 20th, 2023

Objective

To develop a note-by-note savory dish of four elements using ingredients obtained from fruits and vegetable by-products.

Weekly objective

- 1. Design, test, and set the final formula for a cheese sauce using pure compounds.
- 2. Test different percentages of starch and methylcellulose.

Materials and methods

Materials

		FORM	IULA
INGREDIENT	PURE COMPOUND	A (g)	B (g)
Water	H2O	271.50	271.5 0
	α -linolenic acid (6-14%)		
Canola oil	Oleic acid (50-65%)	100.00	100.0 0
	Saturated fatty acids (7%)		
Lactose	Glucose Galactose	30.00	30.00
	β-lactoglobulin α-lactalbumin		
Whey protein	Bovine Serum Albumin Glycomacropeptide Immunoglobulins	25.00	25.00
	α-casein		
Casein protein	β-casein	25.00	25.00
	к-casein		

Table 1. Formulae.

Starch	Amylose (20-30%) Amylopectin (70-80%)	25.00	30.00
Lecithin	Phosporic acid Cholines Esters of glycerol Fatty acids	5.00	5.00
Salt	NaCl	5.00	5.00
Albumin	Albumin	5.00	5.00
Natural aroma gouda cheese	Diacetyl 2-and 3-methylbutanal 2-methylpropanal Acetic acid Butyric acid	5.00	5.00
Sodium citrate	Sodium citrate	2.50	2.50
Cheddar flavour	Acetic acid Butyric acid Caproic acid Caprylie acid	1.50	1.50
Methylcellulose	Methyl ether of β-D- glucose chains	1.00	1.5
Lactic acid	Lactic acid	0.30	0.3

Equipment

- 2 bowls
- 2 wood spoons
- 2 plates
- 2 spoons
- 1 weighing scale
- 1 Thermomix

Process

Figure 1. Process.

Results and discussion

Of the two formulations tested, A was the one that developed the best texture as it was thick but fluid. Formula B was much thicker, achieving a more viscous but uncharacteristic consistency.

The final formula had a concentration of 25 g starch and 1.0g methylcellulose.

In sensory terms, both are described with white color, typical cheese aroma, and creamy and thick texture. The cheese

flavor could be highlighted more.

Figure 2. Cheese sauce.

Conclusions

Formula A was chosen as the final recipe to be part of the dish. Methylcellulose and starch help to develop a great texture.

Molecular Gastronomy

Note-by-note Week 2 Student Name: Leonardo Daniel VILLEGAS HERNANDEZ Date: March 27th, 2023

Objective

To develop a note-by-note savory dish of four elements using ingredients obtained from fruits and vegetable by-products.

Weekly objective

- 1. Design, test, and set the final formula for a tomato sauce using pure compounds.
- 2. Test different percentages of pectin and methylcellulose.

Materials and methods

Materials

INGREDIENT	PURE COMPOUND	A (g)	B (g)
Water	H2O	408.5	408.5
	Glucose		
	Fructose		
	Citric acid		
Tomato powder	Malic acid	37.5	37.5
	Glutamic acid		
	2-methoxyphenol		
	Lycopene		
Sucrose	Glucose	20	20
Sucrose	Fructose		
Olive oil	Tryglicerides	25	15
	Free fatty acids		
High Methoxyl Pectin	Methyl esters of polygalacturonic acid	3	5
Salt	NaCl	5	5
Onion powder	Allicin	1	1
Oregano powder	Carvacrol	1	1
Basil powder	Estragole	1	1
Methylcellulose	Methyl ether of β-D- glucose chains	0.3	0.5

Table 1. Formulae.

Equipment

- 2 bowls
- 2 wood spoons
- 2 plates
- 2 spoons
- 1 weighing scale
- 1 Thermomix

Process

Figure 1. Process.

Results and discussion

Of the two formulas tested, formula B developed the better texture, as it was thick and pulpy. Formula A was more fluid and had a smoother consistency.

The final formula had a concentration of 5g pectin and 0.5g methylcellulose.

In sensory terms, it has a red color, a typical tomato aroma, and a flavor like Bolognese sauce. The texture is perceived as pulpy in formula B

Figure 2. Tomato sauce.

Conclusions

Formula B was chosen as the final recipe to be part of the dish. Methylcellulose and pectin help to develop a great texture when is hot.

Objective

To develop a note-by-note savory dish of four elements using ingredients obtained from fruits and vegetable by-products.

Weekly objective

- 1. Design, test, and set the final formula for a tomato sauce using pure compounds.
- 2. Design, test, and set the final formula for a tuile using pure compounds

Materials and methods

Materials

INGREDIENT	PURE COMPOUND	g
Water	H2O	150
	Sucrose	
	Glucose	
	Xylose	
	Fructose	
Carrot powder	Cellulose	10
	Hemicellulose	
	Ligin	
	Glutamic acid	
	β-carotene	
Agaragar	Agarose	2.7
Agar-agar	Agaropectin	Ζ.Ι
Salt	NaCl	1

Table 2. Formula tuile.		
INGREDIENT	PURE COMPOUND	g
Water	H2O	82

Starch	Amylose (20-30%) Amylopectin (70-80%)	12
Gluten	Gluten	3
Green colorant	Chlorophyll	0.2

Equipment

- 3 bowls
- 2 wood spoons
- 2 plates
- 2 spoons
- 1 weighing scale
- 1 Thermomix
- 1 frying pan
- 1 syringe
- 1 plastic tube
- Ice

Process

Figure 1. Process, carrot spaghetti.

Figure 2. Process, carrot tuile.

Results and discussion

The formation of the noodles was simple. The agar-agar helped provide a solid texture when it cooled.

In sensory terms, the spaghetti has a transparent orange color, no aroma, solid texture, and carrot flavor. However, the carrot flavor could be highlighted more.

The process of creating the tuile was quick, as it was only a matter of hydrating the ingredients and frying the mixture. An important factor to create the desired shape is to spread the mixture well in the hot oil and be careful not to burn them. In sensory terms, it has no flavor; however, for further research is encouraged to flavor it.

Conclusions

Both formulas were validated. Therefore, all the elements of the dish are validated using the note-by-note technique.

Molecular Gastronomy

Note-by-note Week 4 Student Name: Leonardo Daniel VILLEGAS HERNANDEZ Date: April 21th, 2023

Objective

To develop a note-by-note savory dish of four elements using ingredients obtained from fruits and vegetable by-products.

Weekly objective

- 1. Replicate the previously validated formulas.
- 2. Design the dish plating.

Results

The plating was intended to simulate an island of garbage in the sea. The spaghetti (in the center) represents the island while the tuile (on top of the spaghetti) the garbage. The cheese sauce (small dots on one side) is the white foam formed in the ocean due to all the chemicals and other substances dumped into the water. The tomato sauce represents the increase in ocean temperature.